The Endevco® model 8507C is a rugged, miniature, high sensitivity piezoresistive pressure transducer. It has a 0.09 inch (2.3 mm) cylindrical case and is available in ranges from 1 psi to 15 psi with full scale output up to 300 mV. Its high sensitivity combined with high resonance makes it ideal for measuring dynamic pressure.

Endevco pressure transducers feature an active four-arm strain gage bridge diffused into a sculptured silicon diaphragm for maximum sensitivity and wideband frequency response. Self-contained hybrid temperature compensation provides stable performance over the wide temperature range of 0°F to 200°F (-18°C to +93°C). Endevco transducers also feature excellent linearity (even to 3X range), high shock resistance, and excellent stability during temperature transients.

The model 8507C is designed for installations which do not require threaded mounting and can be installed in locations which are difficult to reach. Its small size permits flush mounting on curved surfaces. Its high sensitivity combined with small size and high resonance frequency makes the model 8507C ideal for use on small-scale models in wind tunnels.

The Endevco model 126, 136, 4430A or 4990A (OASIS) are recommended as signal conditioner and power supply.

Model 8507C-1, -2, -5, -15
Piezoresistive pressure transducer

Features

- 1 to 15 psi
- 300 mV full scale
- Rugged, miniature
- Two compensated ranges available

Description

The Endevco® model 8507C is a rugged, miniature, high sensitivity piezoresistive pressure transducer. It has a 0.09 inch (2.3 mm) cylindrical case and is available in ranges from 1 psi to 15 psi with full scale output up to 300 mV. Its high sensitivity combined with high resonance makes it ideal for measuring dynamic pressure.

Endevco pressure transducers feature an active four-arm strain gage bridge diffused into a sculptured silicon diaphragm for maximum sensitivity and wideband frequency response. Self-contained hybrid temperature compensation provides stable performance over the wide temperature range of 0°F to 200°F (-18°C to +93°C). Endevco transducers also feature excellent linearity (even to 3X range), high shock resistance, and excellent stability during temperature transients.

The model 8507C is designed for installations which do not require threaded mounting and can be installed in locations which are difficult to reach. Its small size permits flush mounting on curved surfaces. Its high sensitivity combined with small size and high resonance frequency makes the model 8507C ideal for use on small-scale models in wind tunnels.

The Endevco model 126, 136, 4430A or 4990A (OASIS) are recommended as signal conditioner and power supply.
Model 8507C
Piezoresistive pressure transducer

Specifications
The following performance specifications conform to ISA-RP-37.2 (1964) and are typical values, referenced at +75°F (+24°C), 100 Hz and 10 Vdc unless otherwise noted. Calibration data, traceable to National Institute of Standards and Technology (NIST), is supplied.

Units 8507C-1 -2 -5 -15

<table>
<thead>
<tr>
<th>Range [1]</th>
<th>Units</th>
<th>0–1</th>
<th>0–2</th>
<th>0–5</th>
<th>0–15</th>
</tr>
</thead>
<tbody>
<tr>
<td>psig</td>
<td>mV/psi</td>
<td>200 ±50</td>
<td>100 +50/-20</td>
<td>60 ±20</td>
<td>20 ±7</td>
</tr>
</tbody>
</table>

Positive sensitivity [2]

<table>
<thead>
<tr>
<th>Pressure hysteresis [3]</th>
<th>% FSO typ max</th>
<th>1.5</th>
<th>1.5</th>
<th>0.75</th>
<th>0.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-linearity, independent</td>
<td>% FSO typ max</td>
<td>1.0</td>
<td>1.0</td>
<td>0.50</td>
<td>0.20</td>
</tr>
<tr>
<td>Non-repeatability</td>
<td>% FSO typ max</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Zero shift after 3x range

<table>
<thead>
<tr>
<th>% FSO max</th>
<th>0.2</th>
<th>0.2</th>
<th>0.2</th>
<th>0.2</th>
</tr>
</thead>
</table>

Thermal zero shift

From 0°F to 200°F [-18°C to +93°C]

<table>
<thead>
<tr>
<th>% FSO max</th>
<th>3</th>
<th>3</th>
<th>3</th>
<th>3</th>
</tr>
</thead>
</table>

Thermal sensitivity shift

From 0°F to 200°F [-18°C to +93°C]

<table>
<thead>
<tr>
<th>Hz</th>
<th>55,000</th>
<th>70,000</th>
<th>85,000</th>
<th>130,000</th>
</tr>
</thead>
</table>

Resonance frequency

<table>
<thead>
<tr>
<th>Hz</th>
<th>2.5</th>
<th>2.5</th>
<th>2.0</th>
<th>1.0</th>
</tr>
</thead>
</table>

Non-linearity at 3x range

<table>
<thead>
<tr>
<th>psi/°F</th>
<th>0.003</th>
<th>0.003</th>
<th>0.003</th>
<th>0.003</th>
</tr>
</thead>
<tbody>
<tr>
<td>psi/°C</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Thermal transient response per ISA-S37.10, Para. 6.7, Procedure I [5]

<table>
<thead>
<tr>
<th>Equiv psi</th>
<th>0.01</th>
<th>0.01</th>
<th>0.03</th>
<th>0.1</th>
</tr>
</thead>
</table>

Photoflash response [6]

<table>
<thead>
<tr>
<th>Equiv psi/g</th>
<th>0.0002</th>
<th>0.0002</th>
<th>0.0002</th>
<th>0.0002</th>
</tr>
</thead>
</table>

Warm-up time [7]

<table>
<thead>
<tr>
<th>ms</th>
<th>1</th>
<th>1</th>
<th>1</th>
<th>1</th>
</tr>
</thead>
</table>

Acceleration sensitivity

<table>
<thead>
<tr>
<th>psi ps</th>
<th>20/20</th>
<th>40/40</th>
<th>100/50</th>
<th>150/50</th>
</tr>
</thead>
</table>

Burst pressure (diaphragm/reference side)

<table>
<thead>
<tr>
<th>psi</th>
<th>20/20</th>
<th>40/40</th>
<th>100/50</th>
<th>150/50</th>
</tr>
</thead>
</table>

Electrical

Full scale output

300 ±100 mV at 10.0 Vdc

Supply voltage [8]

10.0 Vdc recommended, 18 Vdc maximum

Electrical configuration

Active four-arm piezoresistive bridge

Polarity

Positive output for increasing pressure into (+) port (end with screen on it)

Resistance

Input 2000 ±800 ohms

Output 1600 ±500 ohms

Isolation

100 megohms minimum at 50 volts; leads to case, leads to shield, shield to case

Noise

5 microvolts rms typical, dc to 50 000 Hz; 50 microvolts rms maximum, dc to 50 000 Hz

Mechanical

Case, material

Nickel - iron alloy

Cable, integral

Four conductor No. 36 AWG Teflon® insulated leads, braided shield, PVC jacket, 30 x 3 in (760 ±76 mm)

Dead volume (+) port

0.00005 cubic inches [0.0008 cc]

Mounting

Bond into #38 drill hole (2.6 mm) using an RTV such as DOW CORNING Silastic® 738; RTV not permitted within 0.10 inch (2.5 mm) of unit’s face.

Weight

0.3 gram [cable weighs 3.6 grams/meter]

Environmental

Media

Internal seals are epoxy and are compatible with clean dry gas media. Media in (+) measurand port is exposed to nickel-iron alloy, silicon, ceramic, Parylene C, and epoxy. Media in (-) measurand port is exposed to the above and RTV silicone coating. For use in water or corrosive media, contact the factory for modifications and installation precautions which may be taken to extend service life.

Temperature [9]

-65°F to +225°F [-54°C to +107°C]

Vibration

1000 g pk

Acceleration

1000 g

Shock

10 000g, 100 microsecond havsine pulse

Humidity

Isolation resistance greater than 100 megohms at 50 volts when tested per MIL-STD-202E, Method 103B, Test condition B.

Specifications continued on next page
Model 8507C
Piezoresistive pressure transducer

Model number definition
Data supplied for all parameters in certified performance section, optional calibrations available for all parameters in typical performance section.

8507C - XX - YYY
Cable length is in inches (i.e. 8507C-15-120 has a length of 120 inches) if no dash is specified the default length is 30 inches

Denotes range in PSIG

-1
-2
-5
-15

Basic model number

Calibration data
Data supplied for all parameters in certified performance section, optional calibrations available for all parameters in typical performance section.

Optional accessories
22409 4 conductor shielded cable
126 3 channel bridge amplifier
136 3 channel DC amplifier
436 Rack mount signal conditioner
4430A Programmable bridge signal conditioner
4990A OASIS rack system

Notes
1. Pressure ranges can be considered bidirectional, e.g., an 8507C-5 can be used to measure + or - 5 psig. Sensitivity on the positive direction is typically within 1% of sensitivity in the negative direction. Sensitivity calibration provided with each unit is for the positive direction.
2. 1 psi = 6.895 kPa = 0.069 bar.
3. FSO (Full Scale Output) is defined as transducer output from 0 to + full scale pressure.
4. Zero Measureand Output (ZMO) is the transducer output with 0 psig applied.
5. Significantly higher thermal transient errors occur if the excitation voltage exceeds 10 Vdc. For sensitive phase change studies, many users reduce the excitation to 5 Vdc or even 1 Vdc.
6. Equiv. PSI Per ISA-37.10, Para. 6.7, Proc. 1. The metal screen partially shields the silicon diaphragm from incident radiation. Accordingly, light incident at acute angles to the screen generally increases the error by a factor of 2 or 3.
7. Warm-up time is defined as elapsed time from excitation voltage “turn on” until the transducer output is within ±1% of reading accuracy.
8. Use of excitation voltages other than 10.0 Vdc requires manufacture and calibration at that voltage since thermal errors increase with high excitation voltages.
9. Units can be compensated over any 200°F (93°C) span from -65°F to +225°F. For temperatures outside this range, contact Endevco.
10. Maintain high levels of precision and accuracy using Endevco’s factory calibration services. Call Endevco’s inside sales force at 800-982-6732 for recommended intervals, pricing and turnaround time for these services as well as for quotations on our standard products.
11. To extend vent tube, use Tygon® micro bore tubing, “.020 I.D X .060 O.D.”, -31°C to +85°C (-25°F to +185°F), which is available from Cole-Parmer. For broader temperature range, use silicone tubing.

Note: Tighter specifications are available on special order.